1,039 research outputs found

    Cortical activity evoked by inoculation needle prick in infants up to one-year old

    Get PDF
    Inoculation is one of the first and most common experiences of procedural pain in infancy. However, little is known about how needle puncture pain is processed by the central nervous system in children. In this study, we describe for the first time the event-related activity in the infant brain during routine inoculation using electroencephalography. Fifteen healthy term-born infants aged 1 to 2 months (n = 12) or 12 months (n = 5) were studied in an outpatient clinic. Pain behavior was scored using the Modified Behavioral Pain Scale. A distinct inoculation event-related vertex potential, consisting of 2 late negative-positive complexes, was observable in single trials after needle contact with the skin. The amplitude of both negative-positive components was significantly greater in the 12-month group. Both inoculation event-related potential amplitude and behavioral pain scores increased with age but the 2 measures were not correlated with each other. These components are the first recordings of brain activity in response to real-life needle pain in infants up to a year old. They provide new evidence of postnatal nociceptive processing and, combined with more traditional behavioral pain scores, offer a potentially more sensitive measure for testing the efficacy of analgesic protocols in this age group

    Degeneration and regeneration of peripheral nerves: role of thrombin and its receptor PAR-1

    Get PDF
    The peripheral nervous system has a striking regeneration potential and after damage extensive changes in the differentiation state both of the injured neurons and of the Schwann cells are observed. Schwann cells, in particular, undergo a large scale change in gene expression becoming able to support axonal regeneration. Nerve injury is generally associated to inflammation and activation of the coagulation cascade. Thrombin acts as a polyfunctional signalling molecule exerting its physiological function through soluble target proteins and G-protein-coupled receptors, the protease-activated receptors (PARs) [1]. Recently, we have demonstrated that the activation of the main thrombin receptor, PAR-1, in Schwann cells favours their regenerative potential determining the release of factors which promote axonal regrowth [2]. The pro-regenerative potential of thrombin seems to be exerted in a narrow range of concentrations (pM-nM range). In fact, our preliminary data indicate that high levels of thrombin in the micromolar range slow down Schwann cell proliferation and induce cell death. On the contrary, PAR-1 activating peptides mimic the pro-survival but not the pro-apoptotic effects of thrombin. Controlling thrombin concentration may preserve neuronal health during nerve injury and represent a novel target for pharmacologic therapies

    The Development of Nociceptive Network Activity in the Somatosensory Cortex of Freely Moving Rat Pups

    Get PDF
    Cortical perception of noxious stimulation is an essential component of pain experience but it is not known how cortical nociceptive activity emerges during brain development. Here we use continuous telemetric electrocorticogram (ECoG) recording from the primary somatosensory cortex (S1) of awake active rat pups to map functional nociceptive processing in the developing brain over the first 4 weeks of life. Cross-sectional and longitudinal recordings show that baseline S1 ECoG energy increases steadily with age, with a distinctive beta component replaced by a distinctive theta component in week 3. Event-related potentials were evoked by brief noxious hindpaw skin stimulation at all ages tested, confirming the presence of functional nociceptive spinothalamic inputs in S1. However, hindpaw incision, which increases pain sensitivity at all ages, did not increase S1 ECoG energy until week 3. A significant increase in gamma (20-50 Hz) energy occurred in the presence of skin incision at week 3 accompanied by a longer-lasting increase in theta (4-8 Hz) energy at week 4. Continuous ECoG recording demonstrates specific postnatal functional stages in the maturation of S1 cortical nociception. Somatosensory cortical coding of an ongoing pain "state" in awake rat pups becomes apparent between 2 and 4 weeks of age

    PAR1 activation induces the release by Schwann cells of factors promoting cell survival and neuritogenesis

    Get PDF
    Protease-activated receptor 1 (PAR1) is a member of a family of four G-protein-coupled receptors which are activated by proteolytic cleavage of their N-terminal extracellular domain. The expression and the role of PAR1 in peripheral nervous system (PNS) is still poorly investigated, although high PAR1 mRNA expression was found in the dorsal root ganglia and in the non-compacted Schwann cell myelin microvilli at the nodes of Ranvier. Schwann cells (SCs) are the principal population of glial cells of the PNS which myelinate axons and play a key role in axonal regeneration and remyelination. Aim of the present study was to determine if the activation of PAR1 affects the neurotrophic properties of SCs. By double immunofluorescence we observed a specific staining for PAR1 in S100ȕ-positive cells of rat sciatic nerve and sciatic teased fibers. Moreover, PAR1 was highly expressed in SC cultures obtained from both neonatal and adult rat sciatic nerves. When PAR1 specific agonists were added to these cultures an increased proliferation rate was observed. Moreover, the conditioned medium obtained from primary SCs treated with PAR1 agonists increased cell survival and neurite outgrowth on PC12 cells respect to controls. By proteomics, western blot and RT-PCR analyses we identified five proteins which are released by SCs following PAR1 stimulation: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). Conversely, a significant decrease in the level of three proteins was observed: Complement C1r subcomponent (C1r) and Complement component 1 Q subcomponent-bindingprotein (C1qbp). When PAR1 expression was silenced by siRNA the observed pro-survival and neurotrophic properties of SCs appear to be reduced respect to controls. References PAR1 activation affects the neurotrophic properties of Schwann cells. Pompili E1, Fabrizi C2, Somma F2, Correani V3, Maras B3, Schininà ME3, Ciraci V2, Artico M4, Fornai F5, Fumagalli L2. 2017 Jan 4;79:23-33. doi: 10.1016/j.mcn.2017.01.001.Schwann cells (SCs) regulate a wide variety of axonal functions in the peripheral nervous system, providing a supportive growth environment following nerve injury (1). Here we show that rat SCs express the protease-activated receptor-1 (PAR1) both in vivo and in vitro. PAR1 is a G-protein coupled receptor eliciting cellular responses to thrombin and other proteases (2). To investigate if PAR1 activation affects the neurotrophic properties of SCs, this receptor was activated by a specific agonist peptide (TFLLR) and the conditioned medium was transferred to PC12 pheocromocytoma cells for assessing cell survival and neurite outgrowth. Culture medium from SCs treated with 10 µM TFLLR reduced significantly the release of LDH and increased the viability of PC12 cells with respect to the medium of the untreated SCs. Furthermore, conditioned medium from TFLLR-treated SCs increased neurite outgrowth on PC12 cells respect to control medium from untreated cells. To identify putative neurotrophic candidates we performed proteomic analysis on SC secretoma and real time PCR experiments after PAR1 activation. Stimulation of SCs with TFLLR increased specifically the release of a subset of five proteins: Macrophage migration inhibitory factor (Mif), Aldose reductase (Akr1b1), Matrix metalloproteinase-2 (Mmp2), Syndecan-4 (Sdc) and Decorin (Dcn). At the same time there was a significant decrease in the level of three proteins: Complement C1r subcomponent (C1r), Complement component 1 Q subcomponent-binding protein (C1qbp) and Angiogenic factor with G patch and FHA domains 1 (Aggf1). These data indicate that PAR1 stimulation does induce the release by SCs of factors promoting cell survival and neuritogenesis. Among these proteins, Mif, Sdc, Dcn and Mmp2 are of particular interest

    Autophagy in trimethyltin-induced neurodegeneration

    Get PDF
    Autophagy is a degradative process playing an important role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria and endoplasmic reticulum, as well as eliminating intracellular pathogens. The autophagic process is important for balancing sources of energy at critical developmental stages and in response to nutrient stress. Recently, autophagy has been involved in the pathophysiology of neurodegenerative diseases although its beneficial (pro-survival) or detrimental (pro-death) role remains controversial. In the present review, we discuss the role of autophagy following intoxication with trimethyltin (TMT), an organotin compound that induces severe hippocampal neurodegeneration associated with astrocyte and microglia activation. TMT is considered a useful tool to study the molecular mechanisms occurring in human neurodegenerative diseases such as Alzheimer’s disease and temporal lobe epilepsy. This is also relevant in the field of environmental safety, since organotin compounds are used as heat stabilizers in polyvinyl chloride polymers, industrial and agricultural biocides, and as industrial chemical catalysts

    Mechanical characteristics of graphene nanoplatelets-modified asphalt mixes. A comparison with polymer-and not-modified asphalt mixes

    Get PDF
    In recent years, nanotechnology has sparked an interest in nanomodification of bituminous materials to increase the viscosity of asphalt binders and improves the rutting and fatigue resistance of asphalt mixtures. This paper presents the experimental results of laboratory tests on bituminous mixtures laid on a 1052 m-long test section built in Rome, Italy. Four asphalt mixtures for wearing and binder layer were considered: two polymer modified asphalt concretes (the former modified with the additive Superplast and the latter modified with styrene-butadiene-styrene), a "hard" graphene nanoplatelets (GNPs) modified asphalt concrete and a not-modified mixture. The indirect tensile strength, water sensitivity, stiffness modulus, and fatigue resistance of the mixtures were tested and compared. A statistical analysis based on the results has shown that the mixtures with GNPs have higher mechanical performances than the others: GNP could significantly improve the tested mechanical performances; further studies will be carried out to investigate its effect on rutting and skid resistance

    Long-range temporal organisation of limb movement kinematics in human neonates

    Get PDF
    Objective: Movement provides crucial sensorimotor information to the developing brain, evoking somatotopic cortical EEG activity. Indeed, temporal-spatial organisation of these movements, including a diverse repertoire of accelerations and limb combinations (e.g. unilateral progressing to bilateral), predicts positive sensorimotor outcomes. However, in current clinical practice, movements in human neonates are qualitatively characterised only during brief periods (a few minutes) of wakefulness, meaning that the vast majority of sensorimotor experience remains unsampled. Here our objective was to quantitatively characterise the long-range temporal organisation of the full repertoire of newborn movements, over multi-hour recordings. Methods: We monitored motor activity across 2–4 h in 11 healthy newborn infants (median 1 day old), who wore limb sensors containing synchronised tri-axial accelerometers and gyroscopes. Movements were identified using acceleration and angular velocity, and their organisation across the recording was characterised using cluster analysis and spectral estimation. Results: Movement occurrence was periodic, with a 1-hour cycle. Peaks in movement occurrence were associated with higher acceleration, and a higher proportion of movements being bilateral. Conclusions: Neonatal movement occurrence is cyclical, with periods consistent with sleep-wake behavioural architecture. Movement kinematics are organised by these fluctuations in movement occurrence. Recordings that exceed 1-hour are necessary to capture the long-range temporal organisation of the full repertoire of newborn limb movements. Significance: Future work should investigate the prognostic value of combining these movement recordings with synchronised EEG, in at-risk infants

    Experimental Validation of the Innovative Thermal Energy Storage Based on an Integrated System "Storage Tank/Steam Generator"

    Get PDF
    Abstract In the past years, an innovative thermal energy storage system at high temperature (up to 550C) for CSP plants was proposed by ENEA and Ansaldo Nucleare: a single storage tank integrated with a steam generator immersed in the heat storage medium. The idea is based on the exploitation of the thermophysical characteristics of the heat storage medium (a binary mixture of salts of NaNO3 at 60% and KNO3 at 40%) in order to maintain over time, in the single tank, a thermal stratification of the fluid. The thermal stratification is able to trigger, in the immersed steam generator, the natural circulation, shell side and downwards, of the hot molten salt cooled down by the water that flows upwards tube side, thus heating up and producing superheated steam. The advantages of such a system are: - efficient performances; - simple implementation; - compactness: - modularity; - and, overall, contained costs: only one storage tank instead of the two tanks and only one heat exchanger instead of the three exchangers of the classic configuration; reduced quantity of salt; minimization of piping, valves and other components. The technical feasibility of the proposed system, together with the stability over time of the stratification in temperature of the storage medium, have been already verified and assessed. This report has the aim of presenting the experimental results obtained by ENEA in the Casaccia Research Centre (Rome, Italy), with a small scale test section consisting of a 300 kWth steam generator inserted in a 8 m3 storage tank with molten salt at high temperature. The reported results relate to the behaviour of the system in steady state conditions, and show its promising performances

    Altered cortical processing of somatosensory input in pre-term infants who had high-grade germinal matrix-intraventricular haemorrhage

    Get PDF
    High-grade (large) germinal matrix-intraventricular haemorrhage (GM-IVH) is one of the most common causes of somatomotor neurodisability in pre-term infants. GM-IVH presents during the first postnatal week and can impinge on somatosensory circuits resulting in aberrant somatosensory cortical events straight after injury. Subsequently, somatosensory circuits undergo significant plastic changes, sometimes allowing the reinstatement of a somatosensory cortical response. However, it is not known whether this restructuring results in a full recovery of somatosensory functions. To investigate this, we compared somatosensory responses to mechanical stimulation measured with 18-channels EEG between infants who had high-grade GM-IVH (with ventricular dilatation and/or intraparenchymal lesion; n = 7 studies from 6 infants; mean corrected gestational age = 33 weeks; mean postnatal age = 56 days) and age-matched controls (n = 9 studies from 8 infants; mean corrected gestational age = 32 weeks; mean postnatal age = 36 days). We showed that infants who had high-grade GM-IVH did not recruit the same cortical source configuration following stimulation of the foot, but their response to stimulation of the hand resembled that of controls. These results show that somatosensory cortical circuits are reinstated in infants who had GM-IVH, during the several weeks after injury, but remain different from those of infants without brain injury. An important next step will be to investigate whether these evidences of neural reorganisation predict neurodevelopmental outcome

    Event-related potentials following contraction of respiratory muscles in pre-term and full-term infants

    Get PDF
    Objective: Involuntary isolated body movements are prominent in pre-term and full-term infants. Proprioceptive and tactile afferent feedback following limb muscle contractions is associated with somatotopic EEG responses. Involuntary contractions of respiratory muscles, primarily the diaphragm – hiccups – are also frequent throughout the human perinatal period during active behavioural states. Here we tested whether diaphragm contraction provides afferent input to the developing brain, as following limb muscle contraction. / Methods: In 13 infants on the neonatal ward (30–42 weeks corrected gestational age), we analysed EEG activity (18-electrode recordings in six subjects; 17-electrode recordings in five subjects; 16-electrode recordings in two subjects), time-locked to diaphragm contractions (n = 1316) recorded with a movement transducer affixed to the trunk. / Results: All bouts of hiccups occurred during wakefulness or active sleep. Each diaphragm contraction evoked two initial event-related potentials with negativity predominantly across the central region, and a third event-related potential with positivity maximal across the central region. / Conclusions: Involuntary contraction of the diaphragm can be encoded by the brain from as early as ten weeks prior to the average time of birth. / Significance: Hiccups – frequently observed in neonates – can provide afferent input to developing sensory cortices in pre-term and full-term infants
    • …
    corecore